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Consider the initial-valued Klein-Gordon-Folk Equation,

∂2u

∂t2
−∆xu+m2u = 0, t > 0, x ∈ R3

u|t=0 = u0(x⃗),
∂u

∂t
|t=0 = u1(x⃗)

A solution to this equation is a wave function that describes a free relativistic scalar particle of mass m.
We wish to find a distributional solution to our equation, determine under what conditions it is a classical
solution, and analyze its well-posedness.

1 Formulation of the generalized Cauchy problem.

Let v(x⃗, t) = θ(t)u(x⃗, t) ∈ D′

+. Then

∂v

∂t
= δ(t) · u0(x⃗) + θ(t)

{
∂u

∂t

}
∂2v

∂t2
= δ′(t) · u0(x⃗) + δ(t) · u1(x⃗) + θ(t)

{
∂2u

∂t2

}
∆xv = θ(t) {∆xu}

∴
∂2v

∂t2
−∆xv +m2v = δ(t) · u1(x⃗) + δ

′
(t) · u0(x⃗)

Now that we have formalized the generalized Cauchy problem, we need to solve it. We will do so by
calculating it’s corresponding causal Green’s function. Taking the convolution of our Green’s function with
our inhomogeneity will result in a distributional solution to our equation.

2 Calculation of Green’s function

A retarded (or causal) Green’s function for the Klein-Gordon-Folk operator satisfies the following equation,(
∂2

∂t2
−∆x +m2

)
G(x⃗, t) = δ(t) · δ(x⃗), G(x⃗, t) = 0, t < 0

If our Green’s function exists as a temperate distribution, then for any ϵ > 0,

Gϵ(x, t) = e−ϵtG(x, t) ∈ S ′ and Gϵ → G in S ′
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Gϵ is clearly a temperate distribution since it decays exponentially as t → ∞ and Gϵ = 0 if t < 0, due to the
causality of G.
Furthermore, Gϵ satisfies the following equation,((

∂

∂t
+ ϵ

)2

−∆x +m2

)
Gϵ(x⃗, t) = δ(t) · δ(x⃗), Gϵ(x⃗, t) = 0, t < 0

We can validate this by plugging in.((
∂

∂t
+ ϵ

)2

−∆x +m2

)
Gϵ(x⃗, t) =

(
∂2

∂t2
+ 2ϵ

∂

∂t
+ ϵ2 −∆x +m2

)
Gϵ(x⃗, t)

=

(
∂2

∂t2
+ 2ϵ

∂

∂t
+ ϵ2 −∆x +m2

)
e−ϵtG(x⃗, t)

= e−ϵt

(
∂2

∂t2
−∆x +m2

)
G(x⃗, t)

= e−ϵt · δ(t) · δ(x⃗)
= δ(t) · δ(x⃗)

Additionally, F [Gϵ(x⃗, t)] → F [G(x⃗, t)] in S ′ as ϵ → 0+ by continuity of the Fourier transform and(
(−iw)2 − 2iwϵ+ ϵ2 − (−i)2 < k⃗, k⃗ > +m2

)
F [Gϵ(x⃗, t)](k⃗, w) = 1

=⇒ F [Gϵ(x⃗, t)](k⃗, w) =
1

|⃗k|2 +m2 − (w + iϵ)2

since Ft[δ(t)] = 1 and Fx[δ(x)] = 1.
Observe, for a Schwartz function φ ∈ S,

(Gϵ, φ) = (F−1[F [Gϵ]], φ) = (F [Gϵ],F−1[φ])

The action of a temperate distribution on a Schwartz function converges absolutely and hence we can
regularize the integral in any way we’d like. So,

(Gϵ(x⃗, t), φ) = − 1

(2π)4
lim

R→∞

∫ ∫ ∫ ∫ R

−R

1

(w + iϵ)2 − (|⃗k|2 +m2)
e−iwte−ik⃗·x⃗φdw d3k d3x dt

Let’s focus on the inner integral for now. Observe that we have singularities for w = ±
√
|⃗k|2 +m2 − iϵ.

Observe that both poles are shifted down. This aligns with our goal of obtaining a retarded Green’s function
and is the reason we choose our specific regularization for G.

Observe what happens if we close our contour in the positive Im(w) half-space as shown in Figure 2. Doing
so completely avoids our poles, giving us residue values of 0. Further notice that by choosing this path, we
must set t < 0. Otherwise, the integral over our arc does not converge if we bring the limit in. So for t < 0,
G(x⃗, t) = 0, which can be applied by adding a step function θ(t) to our final result.

Now, what happens if we include our poles and close our contour in the negative Im(w) half-space as shown
in Figure 3. First, observe that our contour is oriented clockwise, so we have an added negative sign.
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Re(w)

Im(w)

w =

√
|⃗k|2 +m2 − iϵw = −

√
|⃗k|2 +m2 − iϵ

Figure 1: w-Plane with poles at w = ±
√
|⃗k|2 +m2 − iϵ.

Re(w)

Im(w)

√
|⃗k|2 +m2 − iϵ−

√
|⃗k|2 +m2 − iϵ

θ(t)

Figure 2: Contour closed over positive Im(w)

Using Cauchy’s residue theorem, we obtain the following

(Gϵ(x⃗, t), φ) = − 1

(2π)4
lim

R→∞

∫ ∫ ∫ ∫ R

−R

1

(w + iϵ)2 − (|⃗k|2 +m2)
e−iwte−ik⃗·x⃗φdw d3k d3x dt

=
2πiθ(t)

(2π)4
lim
a→∞

∫ ∫ ∫
|k|<a

e−i
√

|⃗k|2+m2t

2

√
|⃗k|2 +m2

− ei
√

|⃗k|2+m2t

2

√
|⃗k|2 +m2

 e−ik⃗·x⃗φd3k d3x dt

=
θ(t)

i(2π)3
lim
a→∞

∫ ∫ ∫
|k|<a

 ei
√

|⃗k|2+m2t

2

√
|⃗k|2 +m2

− e−i
√

|⃗k|2+m2t

2

√
|⃗k|2 +m2

 e−ik⃗·x⃗φd3k d3x dt

Note that we are allowed to bring the limit inside by Lebesgue Dominated Convergence Theorem since φ is
a Schwartz function.
For the sake of clarity, we define the following two integrals as such:

I1 =

∫
|k|<a

ei
√

|⃗k|2+m2t

2i

√
|⃗k|2 +m2

e−ik⃗·x⃗ d3k

I2 =

∫
|k|<a

e−i
√

|⃗k|2+m2t

2i

√
|⃗k|2 +m2

e−ik⃗·x⃗ d3k
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Re(w)

Im(w)

Figure 3: Contour closed over negative Im(w)

Since we are integrating over the entire space, making the substitution k = −k yields

I1 =

∫
|k|<a

ei
√

|⃗k|2+m2t

2i

√
|⃗k|2 +m2

eik⃗·x⃗ d3k

I2 =

∫
|k|<a

e−i
√

|⃗k|2+m2t

2i

√
|⃗k|2 +m2

eik⃗·x⃗ d3k

First we will solve for I1 and the solution for I2 will follow since I2 = −I⋆1 . Converting to spherical
coordinates,

I1 =

∫
|k|<a

ei
√

|⃗k|2+m2t

2i

√
|⃗k|2 +m2

eik⃗·x⃗ d3k

=

∫ 2π

0

∫ π

0

∫ a

0

ei
√

|⃗k|2+m2t

2i

√
|⃗k|2 +m2

ei|⃗k||x⃗| cos(θ) |⃗k|2 sin(θ) d|⃗k| dθ dϕ

=
π

|x⃗|

∫ a

0

ei
√

|⃗k|2+m2t√
|⃗k|2 +m2

|⃗k|
(
e−i|⃗k||x⃗| − ei|⃗k||x⃗|

)
d|⃗k|

=
iπ

|x⃗|
∂

∂|x⃗|

∫ a

0

ei
√

|⃗k|2+m2t√
|⃗k|2 +m2

(
e−i|⃗k||x⃗| + ei|⃗k||x⃗|

)
d|⃗k|

We can interchange the order of integration to integrate over our angles first by Fubini’s Theorem since
everything converges absolutely (we are integrating over a bounded region). We can also take the partial
derivative out of the integral by Fubini’s Theorem since the integrand is bounded by 3/m and we are
integrating over a bounded region. Even if m = 0, this is a removable singularity.
Making the following substitution, |⃗k| = m sinh(ξ),

I1 =
iπ

2|x⃗|
∂

∂|x⃗|

[∫ b(a)

0

eim[t cosh(ξ)−|x⃗| sinh(ξ)] dξ +

∫ b(a)

0

eim[t cosh(ξ)+|x⃗| sinh(ξ)] dξ

]

where b(a) = sinh−1(a/m).
There are four cases to be considered here:

1. t > 0, t > |x⃗|
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2. t > 0, t < |x⃗|

3. t < 0, |t| > |x⃗|

4. t < 0, |t| < |x⃗|

Note that since our Green’s function G(x⃗, t) = 0, t < 0, there is no point in evaluating our integral for case
3 or 4. To solve the integral in case 1 or 2, make the following substitutions:

1. t =
√
t2 − |x⃗|2 cosh(z), |x⃗| =

√
t2 − |x⃗|2 sinh(z)

2. t =
√
|x⃗|2 − t2 sinh(z), |x⃗| =

√
|x⃗|2 − t2 cosh(z)

These substitutions are valid because cosh2(x)− sinh2(x) = 1.
With these substitutions, we get the following (identities used can be found in appendix) for each case:
Case 1:

A1 =
1

2

∫ b(a)

0

eim
√

t2−|x⃗|2(cosh(z) cosh(ξ)−sinh(z) sinh(ξ)) dξ +
1

2

∫ b(a)

0

eim
√

t2−|x⃗|2(cosh(z) cosh(ξ)+sinh(z) sinh(ξ)) dξ

=
1

2

∫ b(a)

0

eim
√

t2−|x⃗|2 cosh(ξ−z) dξ +
1

2

∫ b(a)

0

eim
√

t2−|x⃗|2 cosh(ξ+z) dξ

=

∫ b(a)

0

eim
√

t2−|x⃗|2 cosh(ξ) dξ

=
1

2

∫ b(a)

−b(a)

eim
√

t2−|x⃗|2 cosh(ξ) dξ

The last equality holds since cosh(x) is even.
Recall our limit for a, can we move it inside? Well, φ is a Schwartz function so we can move it inside subject
to the innermost integral converging if we bring it inside. If doing so does cause the final integral to converge,
then we would also be justified in moving the limit past the partial derivative. So would it converge? The
answer is yes.

lim
a→∞

A1 =
1

2
lim
a→∞

∫ b(a)

−b(a)

eim
√

t2−|x⃗|2 cosh(ξ) dξ

=
1

2
lim
b→∞

∫ b

−b

eim
√

t2−|x⃗|2 cosh(ξ) dξ

= 2iπH
(1)
0 (m

√
t2 − |x⃗|2)

= 2iπJ0(m
√
t2 − |x⃗|2)− πN0(m

√
t2 − |x⃗|2)

So we take our limit inside and obtain the expression in the last equality.
Case 2:

A1 =
1

2

∫ b(a)

0

eim
√

|x⃗|2−t2(sinh(z) cosh(ξ)−cosh(z) sinh(ξ)) dξ +
1

2

∫ b(a)

0

eim
√

|x⃗|2−t2(sinh(z) cosh(ξ)+cosh(z) sinh(ξ)) dξ

=
1

2

∫ b(a)

0

eim
√

|x⃗|2−t2 sinh(ξ−z) dξ +
1

2

∫ b(a)

0

eim
√

|x⃗|2−t2 sinh(ξ+z) dξ

=

∫ b(a)

0

eim
√

|x⃗|2−t2 sinh(ξ) dξ

=
1

2

∫ b(a)

−b(a)

eim
√

|x⃗|2−t2 sinh(ξ) dξ
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As in case 1, we can take the limit inside and obtain

lim
a→∞

A1 =
1

2
lim
a→∞

∫ b(a)

−b(a)

eim
√

|x⃗|2−t2 sinh(ξ) dξ

=
1

2
lim
b→∞

∫ b

−b

eim
√

|x⃗|2−t2 sinh(ξ) dξ

= 2K0(m
√

|x⃗|2 − t2)

From here, we can conclude that

A1 =

{
2iπJ0(m

√
t2 − |x⃗|2)− πN0(m

√
t2 − |x⃗|2) t > |x⃗| > 0

2K0(m
√
|x⃗|2 − t2) |x⃗| > t > 0

Taking derivative, multiplying by iπ
2|x⃗| , taking conjugate and adding, we find that

I1 − I2 =
2π2

|x⃗|
δ(t− |x⃗|)− 2π2mθ(t− |x⃗|)

J1(m
√
t2 − |x⃗|2)√

t2 − |x⃗|2

where J0(z) is the Bessel function of order zero, N0(z) is the Neumann function of order zero, and K0(z) is
the Hankel function of an imaginary argument of order zero.
And hence (recall the step function from before),

G(x⃗, t) =
δ(t− |x⃗|)
4π|x⃗|

− θ(t− |x⃗|)
mJ1(m

√
t2 − |x⃗|2)

4π
√

t2 − |x⃗|2
, G(x⃗, t) = 0, t < 0

3 Verifying initial conditions

Now that we have obtained our Green’s function, we need to make sure that when we take the convolution
of it with our inhomogeneity, we satisfy our initial conditions. To do so, we must see what it and its
derivatives approach as t approaches 0+. If we do so and they match, we know that we have obtained a valid
distributional solution.

So, let φ(x⃗) ∈ D′
(R3) be test function and let g(t) = (G(x⃗, t), φ(x⃗)). Let us first compute g(t) explicitly.

g(t) = (G(x⃗, t), φ(x⃗))

=
1

4π

∫
|x⃗|=t

φ(x⃗)

|x⃗|
dSx − m

4π
θ(t)

∫
|x⃗|≤t

J1(m
√

t2 − |x⃗|2)√
t2 − |x⃗|2

φ(x⃗)d3x

(1)
=

t

4π

∫
|z⃗|=1

φ(tz⃗)dSz −
mt2

4π
θ(t)

∫
|z⃗|≤1

J1(mt
√
1− |z⃗|2)√

1− |z⃗|2
φ(tz⃗)d3z

Clearly,

lim
t→0+

g(t)
(2)
= 0
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Now we will consider g′(t)

∂

∂t
g(t)

(3)
=

1

4π

∫
|z⃗|=1

φ(tz⃗)dSz +
t

4π

∫
|z⃗|=1

∂

∂t
φ(tz⃗)dSz −

mt

2π
θ(t)

∫
|z⃗|≤1

J1(mt
√

1− |z⃗|2)
1− |z⃗|2

φ(tz⃗)d3z+

− mt2

4π
δ(t)

∫
|z⃗|≤1

J1(mt
√

1− |z⃗|2)
1− |z⃗|2

φ(tz⃗)d3z − mt2

4π
θ(t)

∂

∂t

∫
|z⃗|≤1

J1(mt
√

1− |z⃗|2)
1− |z⃗|2

φ(tz⃗)d3z

(4)
=

1

4π

∫
|z⃗|=1

φ(tz⃗)dSz +
t

4π

∫
|z⃗|=1

∂

∂t
φ(tz⃗)dSz −

mt

2π
θ(t)

∫
|z⃗|≤1

J1(mt
√

1− |z⃗|2)
1− |z⃗|2

φ(tz⃗)d3z+

− mt2

4π
θ(t)

∫
|z⃗|≤1

∂

∂t

J1(mt
√

1− |z⃗|2)
1− |z⃗|2

φ(tz⃗)d3z

From here, it is easy to see that

lim
t→0+

∂

∂t
g(t)

(5)
= δ(t) in D′(R)

Now we will analyze ∂2

∂t2 g(t).

∂2

∂t2
g(t)

(3,4)
=

1

2π

∫
|z⃗|=1

∂

∂t
φ(tz⃗)dSz +

t

4π

∂

∂t

∫
|z⃗|=1

∂

∂t
φ(tz⃗)dSz −

m

2π
θ(t)

∫
|z⃗|≤1

J1(mt
√

1− |z⃗|2)
1− |z⃗|2

φ(tz⃗)d3z

− mt

2π
δ(t)

∫
|z⃗|≤1

J1(mt
√
1− |z⃗|2)

1− |z⃗|2
φ(tz⃗)d3z − mt

π
θ(t)

∫
|z⃗|≤1

∂

∂t

J1(mt
√

1− |z⃗|2)
1− |z⃗|2

φ(tz⃗)d3z

− mt2

4π
δ(t)

∫
|z⃗|≤1

∂

∂t

J1(mt
√

1− |z⃗|2)
1− |z⃗|2

φ(tz⃗)d3z − mt2

4π
θ(t)

∂

∂t

∫
|z⃗|≤1

∂

∂t

J1(mt
√

1− |z⃗|2)
1− |z⃗|2

φ(tz⃗)d3z

(6)
=

1

2π

∫
|z⃗|=1

∂

∂t
φ(tz⃗)dSz +

t

4π

∫
|z⃗|=1

∂2

∂t2
φ(tz⃗)dSz −

m

2π
θ(t)

∫
|z⃗|≤1

J1(mt
√

1− |z⃗|2)
1− |z⃗|2

φ(tz⃗)d3z

− mt

π
θ(t)

∫
|z⃗|≤1

∂

∂t

J1(mt
√
1− |z⃗|2)

1− |z⃗|2
φ(tz⃗)d3z − mt2

4π
θ(t)

∂

∂t

∫
|z⃗|≤1

∂

∂t

J1(mt
√

1− |z⃗|2)
1− |z⃗|2

φ(tz⃗)d3z

(7)
=

1

2π

∫
|z⃗|=1

∂

∂t
φ(tz⃗)dSz +

t

4π

∫
|z⃗|=1

∂2

∂t2
φ(tz⃗)dSz −

m

2π
θ(t)

∫
|z⃗|≤1

J1(mt
√

1− |z⃗|2)
1− |z⃗|2

φ(tz⃗)d3z

− mt

π
θ(t)

∫
|z⃗|≤1

∂

∂t

J1(mt
√
1− |z⃗|2)

1− |z⃗|2
φ(tz⃗)d3z − mt2

4π
θ(t)

∫
|z⃗|≤1

∂2

∂t2
J1(mt

√
1− |z⃗|2)

1− |z⃗|2
φ(tz⃗)d3z

So,

lim
t→0+

∂2

∂t2
g(t)

(8)
= 0 in D′(R)

(1) x⃗ = tz⃗ =⇒ dSx = t2dSz, d3x = t3d3z
(2) Both J1(x) and φ(x) are bounded
(3) ∂

∂tφ(tz⃗) is bounded by definition

(4)
∂

∂t

[
J1(mt

√
1−|z⃗|2√

1−|z⃗|2
φ(tz⃗)

]
= φ(tz⃗) ∂

∂t

J1(mt
√

1−|z⃗|2)√
1−|z⃗|2

+
J1(mt

√
1−|z⃗|2)√

1−|z⃗|2
∂
∂tφ(tz⃗)

= φ(tz⃗)

[
mJ0(mt

√
1− |z⃗|2)− J1(mt

√
1−|z⃗|2)

t
√

1−|z⃗|2

]
+

J1(mt
√

1−|z⃗|2)√
1−|z⃗|2

∂
∂tφ(tz⃗) ≤ Mφ[m+ m

2 ] +
1
2mMφ′

where Mφ = supφ and Mφ′ = supφ′

(5) limt→0+
1
4π

∫
|z|=1

φ(tz⃗)dSz = 1
4π

∫
|z⃗|=1

φ(0)dSz = φ(0) = (δ, φ) by LDCT. The rest trivially go to zero.

(6) ∂2

∂t2φ(t) is bounded by definition.
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(7) ∂2

∂t2

[
J1(mt

√
1−|z⃗|2)√

1−|z⃗|2
φ(tz⃗)

]
= 2 ∂

∂tφ(tz⃗)
∂
∂t

J1(mt
√

1−|z⃗|2)√
1−|z⃗|2

+
J1(mt

√
1−|z⃗|2)√

1−|z⃗|2
∂2

∂t2φ(tz⃗) + φ(tz⃗) ∂2

∂t2
J1(mt

√
1−|z⃗|2)√

1−|z⃗|2

The first two terms are bounded using similar arguments as shown in (2, 3, 4, 6).

Now, φ(tz⃗) ∂2

∂t2
J1(mt

√
1−|z⃗|2)√

1−|z⃗|2
= φ(tz⃗)

[
2m
t

J1(mt
√

1−|z⃗|2)
mt

√
1−|z⃗|2

−m2
√

1− |z⃗|2J1(mt
√
1− |z⃗|2)− m

t J0(mt
√

1− |z⃗|2)
]

≤
[
2m
t +m2

√
1− |z⃗|2

]
supφ

Since 2m
t ≤ 2m

a for t ∈ [a,∞], we can bring the partial inside by Fubini’s Theorem.
(8) LDCT on certain integrals following from (2-7).

4 Convolution

Observe that the causal Green’s function of a (KGF) operator has support in he future light cone Γ+

where t ≥ |x| ≥ 0. Therefore the generalized cauchy problem has a solution u(x, t) = (G ∗ h)(x, t) for any
distribution h(x, t) with support in the positive half-space t ≥ 0, and the solution is unique.
Let g(x, t) ∈ D′(R3+1) satisfying supp g ⊂ Γ+ and let u(x) ∈ D′(R3).
Then by our theorem about the convolution of distributions with support in Γ+ and t ≥ 0, and from the
commutativity and associativity of the direct product,

(g(x, t) ∗ (u(x) · δ(t)), φ(x, t)) = (g(x, t) · (u(y) · δ(τ)), η(τ)η(t)η(t2 − |x|2)φ(x+ y, t+ τ))

= (g(x, t) · u(y) · δ(τ), η(τ)η(t)η(t2 − |x|2)φ(x+ y, t+ τ))

= (g(x, t) · u(y), η(t)η(t2 − |x|2)φ(x+ y, t))

= (g(x, t) · u(y), η(t2 − |x|2)φ(x+ y, t))

Therefore,
g(x, t) ∗ (u(x) · δ(t)) = g(x, t) ∗ u(x)

Since the convolution exists, we can also deduce from here that

g(x, t) ∗ (u(x) · δ(p)(t)) = ∂pg(x, t)

∂tp
∗ u(x)

Thus, a solution to the (KGF) equation can be written as

v(x⃗, t) = G(x⃗, t) ∗ (u1(x⃗) · δ(t)) +G(x⃗, t) ∗ (u0(x⃗) · δ′(t))

= G(x⃗, t) ∗ u1(x⃗) +
∂

∂t
G(x⃗, t) ∗ u0(x⃗)

We can now verify our initial conditions. By continuity of the convolution of distributions lying in a positive
light cone with those having bounded support,

lim
t→0+

v(x⃗, t) = lim
t→0+

G(x⃗, t) ∗ u1(x⃗) + lim
t→0+

∂

∂t
G(x⃗, t) ∗ u0(x⃗)

= 0 ∗ u1(x⃗) + δ(t) ∗ u0(x⃗)

= u0(x⃗)

lim
t→0+

∂

∂t
v(x⃗, t) = lim

t→0+

∂

∂t
G(x⃗, t) ∗ u1(x) + lim

t→0+

∂2

∂t2
G(x⃗, t) ∗ u0(x⃗)

= δ(t) ∗ u1(x⃗) + 0 ∗ u0(x⃗)

= u1(x⃗)
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These results and the fact that v ∈ C1(t > 0) follow directly from calculations and analysis in section 3.
So we have found a valid distributional solution, but does it have bounded support? Our solution having
bounded support is both important for physical realism and key for the well-posedness of our problem. In
this next section we will show that if u0 and u1 have bounded support, then our solution to the generalized
Cauchy problem has bounded support in the variable x for any t > 0.

5 Hyugen’s principle

Observe that for a given t > 0, suppG(x, t) and supp ∂
∂tG(x, t) are bounded by a sphere of radius t. So by

taking G(x⃗, t) ∗ u1(x⃗) +
∂
∂tG(x⃗, t) ∗ u0(x⃗),

supp v(x, t) =
⋃

x∈suppu1

Bt(x) ∪
⋃

x∈suppu0

Bt(x)

as shown in figure 4. Hence, the support of our solution is bounded in x for any given t > 0.

Figure 4: Huygens–Fresnel principle

6 Appendix

1

2πi
lim
b→∞

∫ b

−b

e±im
√
s cosh(ξ+ξ0)dξ =

1

2

(
J0(m

√
s)± iN0(m

√
s)
)

i

2π
lim
b→∞

∫ b

−b

e±im
√
s sinh(ξ+ξ0)dξ =

i

π
K0(m

√
s)

where s > 0 in both formulas.
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